Ideals defining Gorenstein rings are (almost) never products

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Good Ideals in Gorenstein Local Rings

Let I be an m-primary ideal in a Gorenstein local ring (A,m) with dimA = d, and assume that I contains a parameter ideal Q in A as a reduction. We say that I is a good ideal in A if G = ∑ n≥0 I n/In+1 is a Gorenstein ring with a(G) = 1−d. The associated graded ring G of I is a Gorenstein ring with a(G) = −d if and only if I = Q. Hence good ideals in our sense are good ones next to the parameter...

متن کامل

Gorenstein rings through face rings of manifolds

The face ring of a homology manifold (without boundary) modulo a generic system of parameters is studied. Its socle is computed and it is verified that a particular quotient of this ring is Gorenstein. This fact is used to prove that the sphere g-conjecture implies all enumerative consequences of its far reaching generalization (due to Kalai) to manifolds. A special case of Kalai’s manifold g-c...

متن کامل

Q–gorenstein Splinter Rings of Characteristic P Are F–regular

A Noetherian integral domain R is said to be a splinter if it is a direct summand, as an R–module, of every module–finite extension ring, see [Ma]. In the case that R contains the field of rational numbers, it is easily seen that R is splinter if and only if it is a normal ring, but the notion is more subtle for rings of characteristic p > 0. It is known that F–regular rings of characteristic p...

متن کامل

Pseudo-almost valuation rings

The aim of this paper is to generalize the‎‎notion of pseudo-almost valuation domains to arbitrary‎ ‎commutative rings‎. ‎It is shown that the classes of chained rings‎ ‎and pseudo-valuation rings are properly contained in the class of‎ ‎pseudo-almost valuation rings; also the class of pseudo-almost‎ ‎valuation rings is properly contained in the class of quasi-local‎ ‎rings with linearly ordere...

متن کامل

Omega-almost Boolean rings

In this paper the concept of an $Omega$- Almost Boolean ring is introduced and illistrated how a sheaf of algebras can be constructed from an $Omega$- Almost Boolean ring over a locally Boolean space.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 2007

ISSN: 0002-9939

DOI: 10.1090/s0002-9939-07-08758-8